2024
Shang J#*, Ran, T. #, Lu, Y.#, Yang, Q.#, Zhang, G#., et al., Chen X*, Chen H*. (2024). Discovery of novel quinoline papain-like protease inhibitors for COVID-19 through topology constrained molecular generative model. [bioRxiv Preprint]
MacTavish B, Zhu D, Shang J, Shao Q, Yang ZJ, Kamenecka TM, Kojetin DJ. (2024). Ligand efficacy shifts a nuclear receptor conformational ensemble between transcriptionally active and repressive states. [bioRxiv Preprint]
Lu, Y#., Yang, Q#., Ran, T#., Zhang, G., Li, W., et al., Chen H*, Chen X*, Shang J*. (2024). Discovery of orally bioavailable SARS-CoV-2 papain-like protease inhibitor as a potential treatment for COVID-19. Nature Communications, (2024) 15(1), 10169. [bioRxiv Preprint][Article]
Shang J*, Kojetin DJ*. (2024). Unanticipated mechanisms of covalent inhibitor and synthetic ligand cobinding to PPARγ. eLife,13: RP99782 [bioRxiv Preprint] [Article] Insight: “Huber AD, Chen T. Nuclear Receptors: A new mode of inhibition” eLife, 13: e101446.
Wu J, Zhang Y, Li W, Tang H, Zhou Y, You D, Chu X, Li H, Shang J*, Qi N*, Ye BC*. (2024). Mycobacterium tuberculosis suppresses inflammatory responses in host through its cholesterol metabolites. ACS Infectious Diseases, 10(10): 3650-3663. [Article]
Yang Q#, Xue B#, Liu F#, Lu Y#, Tang J#, Yan M, Wu Q, Chen R, Zhou A, Liu L,et al., Zheng J, Peng W*, Shang J*, Chen X*. (2024). Farnesyltransferase inhibitor lonafarnib suppresses respiratory syncytial virus infection by blocking conformational change of fusion glycoprotein. Signal Transduction and Targeted Therapy, 9(1):144. [Article]
Hu S, Tong L, Qin Q, Wen J, Li Y, Feng F, Wu K, Zhou Y, Shang J, Wang J, Liu J, Xie H, Lu X. (2024). Design, Synthesis, and Biological Evaluation of Novel Diaminopyrimidine Macrocycles as Fourth Generation Reversible EGFR Inhibitors That Overcome Clinical Resistance to Osimertinib Mediated by C797S Mutation. Journal of Medicinal Chemistry, [Article]
Peng X, Zhang Z, Zhang Y, Zhou H, Li W, Dai M, Shang J, Xu J, Gu Q. (2024). Discovery of Novel Neo-Clerodane Derivatives as Potent Dual-Functional Antiosteoporosis Agents through Targeting Peroxisome Proliferator-Activated Receptor-γ. Journal of Medicinal Chemistry, 67(17):15738-15755. [Article]
Zhang J, Tang M, Shang J*. (2024). PPARγ Modulators in Lung Cancer: Molecular Mechanisms, Clinical Prospects, and Challenges. Biomolecules, 14(2):190. [Article]
2023
He Y, Zhu D, Greenman K, Ruiz C, Shang J, Lu Q, Kojetin DJ, Drakas R, Cameron MD, Lizarzaburu M, Solt LA, Kamenecka TM. (2023). Structure-Activity Relationship and Biological Investigation of a REV-ERBα-Selective Agonist SR-29065 (34) for Autoimmune Disorders. Journal of Medicinal Chemistry, 66(21):14815-14823. [Article]
Yu X, Shang J, Kojetin DJ. (2023). Molecular basis of ligand-dependent Nurr1-RXRα activation. eLife, 12, e85039. [bioRxiv Preprint] [Article]
2021
Chen ML, Huang X, Wang H, Hegner C, Liu Y, Shang J, Eliason A, Diao H, Park H, Frey B, Wang G, Mosure SA, Solt LA, Kojetin DJ, Rodriguez-Palacios A, Schady DA, Weaver CT, Pipkin ME, Moore DD, Sundrud MS. (2021). CAR directs T cell adaptation to bile acids in the small intestine. Nature, 593(7857), 147-151. [bioRxiv Preprint] [Article]
Shang J, Kojetin DJ. Structural Mechanism Underlying Ligand Binding and Activation of PPARγ. Cell: Structure, 29(9), 940-950. [bioRxiv Preprint] [Article]; Preview: “Siclari JJ, Gardner KH. Two steps, one ligand: How PPARγ binds small-molecule agonists.” Cell: Structure, 29(9), 935-936.
Mosure SA, Strutzenberg TS, Shang J, Munoz-Tello P, Solt LA, Griffin PR, Kojetin DJ. (2021). Structural basis for heme-dependent NCoR binding to the transcriptional repressor REV-ERBβ. Science Advances, 7, eabc6479. [bioRxiv Preprint] [Article]
2020
Shang J, Mosure SA, Zheng J, Brust R, Bass J, Nichols A, Solt LA, Griffin PR, and Kojetin DJ. (2020). A Molecular Switch Regulating Transcriptional Repression and Activation of PPARγ. Nature Communications, (2020)11(1), 956. [Article]
2019
Shang J, Brust R, Griffin PR, Kamenecka TM, and Kojetin DJ. (2019). Quantitative Structural Assessment of Graded Receptor Agonism. (PNAS) Proceedings of the National Academy of Sciences, 116 (44) 22179-22188. [Article]
Mosure S, Shang J, Eberhardt J, Brust R, Zheng J, Griffin PR, Forli S, and Kojetin DJ. (2019). Structural basis of altered potency and efficacy displayed by a major in vivo metabolite of the anti-diabetic PPARγ drug pioglitazone. Journal of Medicinal Chemistry, 62(4), 2008-2023. [Article]
de Vera IM, Munoz-Tello P, Zheng J, Dharmarajan V, Marciano DP, Matta-Camacho E, Giri PK, Shang J, et al., Kojetin DJ. (2019). Defining a canonical ligand-binding pocket in the orphan nuclear receptor Nurr1. Cell: Structure, 27(1), 66-77. [Article]
2018
Shang J, Brust R, Mosure SA, Bass J, Munoz-Tello P, Lin H, Hughes TS, Tang M, Ge Q, Kamenekca TM, and Kojetin DJ.(2018).Cooperative Cobinding of Synthetic and Natural Ligands to the Nuclear Receptor PPARγ. eLife, 7, e43320. [Article]
Brust R, Shang J, Fuhrmann J, Mosure SA, Bass J, et al., Hughes TS and Kojetin DJ. (2018).A structural mechanism for directing corepressor-selective inverse agonism of PPARγ. Nature Communications, 9(1), 4687. [Article]
Chrisman IM, Nemetchek MD#, De Vera IM#, Shang J#, Heidari Z, et al., Kojetin DJ, and Hughes TS. (2018). Defining a conformational ensemble that directs activation of PPARγ. Nature Communications, 9(1), 1794. (# Equal Contribution) [Article]
Amir M, Chaudhari S, Wang R, Campbell S, Mosure SA, Chopp LB, Lu Q, Shang J, et al., Kojetin DJ, Kamenecka TM, and Solt LA.(2018).REV-ERBα Regulates TH17 Cell Development and Autoimmunity.” Cell Reports, 25(13), 3733-3749. [Article]
Zheng J, Corzo C, Chang MR, Shang J, Lam VQ, et al., Kojetin DJ and Griffin PR.(2018).Chemical crosslinking mass spectrometry reveals the conformational landscape of the activation helix of PPARγ; a model for ligand-dependent antagonism. Cell: Structure, 26(11), 1431-1439. [Article]
2017
de Vera IMS, Zheng J, Novick S, Shang J, Hughes TS, et al., Griffin PR and Kojetin DJ. (2017). Synergistic Regulation of Coregulator/Nuclear Receptor Interaction by Ligand and DNA. Cell: Structure, 25(10), 1506-1518. [Article]
2016
Hughes TS#, Shang J#, Brust R, de Vera IMS, Fuhrmann J, Ruiz C, Cameron MD, Kamenecka TM, and Kojetin DJ. (2016) Probing the Complex Binding Modes of the PPARgamma Partial Agonist 2-Chloro-N-(3-chloro-4-((5-chlorobenzo[d]thiazol-2-yl)thio)phenyl)-4-(trifluoromethyl)benzenesulfonamide (T2384) to Orthosteric and Allosteric Sites with NMR Spectroscopy. Journal of Medicinal Chemistry 59(22):10335-10341. (# Equal Contribution) [Article]
de Vera IM, Giri PK, Munoz-Tello P, Brust R, Fuhrmann J, Matta-Camacho E, Shang J, et al., Solt LA and Kojetin DJ. (2016). Identification of a binding site for unsaturated fatty acids in the orphan nuclear receptor Nurr1. ACS Chemical Biology, 11(7), 1795-1799. [Article]
2015
Shang J, Huang X and Du Z. (2015). The FP domains of PI31 and Fbxo7 have the same protein fold but very different modes of protein-protein interaction. Journal of Biomolecular Structure & Dynamics. 33(7), 1528-1538. [Article]
2014
Shang J, Wang G, Yang Y, Huang X and Du Z. (2014). Structure of the FP domain of Fbxo7 reveals a novel mode of protein–protein interaction. Acta Crystallographica Section D: Biological Crystallography, 70(1), 155-164. [Article]
2013
Shang J, Wang G, Yang Y, Huang X and Du Z. (2013). Expression, purification and crystallization of the FP domain of the human F-box protein Fbxo7. Acta Crystallographica Section F, 69(10), 1097-1099. [Article]
2012
Wang H, Wang L, Shang J, Li X, Wang H, Gui J, Lei A.(2012). Fe-catalysed oxidative C–H functionalization /C–S bond formation. Chemical Communications, 48(1), 76–78. [Article]
PDB entries: 4L9H, 4L9C, 4OUH, 5UGM, 6AVI, 6AUG, 6C1I, 6MD0, 6MD1, 6MD2, 6MD4, 6MCZ, 6DGP, 6DGQ, 6DGO, 6DGL, 6DHA, 6DGR, 6DH9, 6O67, 6O68, 6ONI, 6ONJ, 6PDZ, 6VML, 6VMM, 6VMN, 6VMO, 6VMP, 6VMQ, 6VMR, 6WAL, 6VZL, 6VZM, 6VZN, 6VZO, 7JQG, 8YX2, 8YX3, 8YX4, 8YX5, 8FHE, 8FHF, 8FHG, 8ZFN, 8ZFO, 8ZFP, 8ZFQ, 8ZFR, 8ZFS, 8ZFT.